Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
Multi-scale, Multi-physics Modelling and Computation of magneto-sensitive POLYmeric materials
(Drittmittelfinanzierte Einzelförderung)
Titel des Gesamtprojektes:
Projektleitung: Paul Steinmann
Projektbeteiligte:
Projektstart: 1. April 2012
Projektende: 31. März 2017
Akronym: MOCOPOLY
Mittelgeber: EU - 7. RP / Ideas / ERC Advanced Investigator Grant (AdG)
URL:
Abstract
MOCOPOLY is a careful revision of an AdG2010-proposal that was evaluated above the quality threshold in steps1&2. In the meantime the applicant has made further considerable progress related to the topics of MOCOPOLY. Magneto-sensitive polymers (elastomers) are novel smart materials composed of a rubber-like matrix filled with magneto-active particles. The non-linear elastic characteristics of the matrix combined with the magnetic properties of the particles allow these compounds to deform dramatically in response to relatively low external magnetic fields. The rapid response, the high level of deformations achievable, and the possibility to control these deformations by adjusting the external magnetic field, make these materials of special interest for the novel design of actuators for a fascinating variety of technological applications. It is the overall objective of this proposal to uncover the process-microstructure-properties relations of the emerging novel multi-scale, multi-physics material class of magneto-sensitive polymers with the aim to better exploit its promising potential for future, currently unimagined technological applications. This objective will only be achieved by performing integrated multi-disciplinary research in fabrication, characterisation, modelling, simulation, testing and parameter identification. This proposal therefore sets up a work programme consisting of nine strongly interconnected work packages that are devoted to:1) Fabrication of magneto-sensitive polymers2) microstructure characterisation by modelling and simulation3) microstructure characterisation by CT-scanning4) continuum physics modelling at the micro-scale5) computational multi-physics homogenisation6) continuum physics modelling at the macro-scale7) testing at the macro-scale8) multi-scale parameter identification9) macro-scale parameter identification.The work programme is therefore characterised by various feedback loops between the work packages.
Publikationen
- Brands B., Mergheim J., Steinmann P.:
Reduced-order modelling for linear heat conduction with parametrised moving heat sources
In: GAMM-Mitteilungen 39 (2016), S. 170-188
ISSN: 0936-7195
DOI: 10.1002/gamm.201610011 - Pivovarov D., Steinmann P.:
On stochastic FEM based computational homogenization of magneto-active heterogeneous materials with random microstructure
In: Computational Mechanics 58 (2016), S. 981-1002
ISSN: 0178-7675
DOI: 10.1007/s00466-016-1329-4 - Pivovarov D., Steinmann P.:
Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties
In: Computational Mechanics 57 (2016), S. 123-147
ISSN: 0178-7675
DOI: 10.1007/s00466-015-1224-4 - Walter B., Pelteret JP., Kaschta J., Schubert DW., Steinmann P.:
Preparation of magnetorheological elastomers and their slip-free characterization by means of parallel-plate rotational rheometry
In: Smart Materials and Structures 26 (2017), Art.Nr.: 085004
ISSN: 1361-665X
DOI: 10.1088/1361-665X/aa6b63
URL: http://iopscience.iop.org/article/10.1088/1361-665X/aa6b63 - Walter B., Pelteret JP., Kaschta J., Schubert DW., Steinmann P.:
On the wall slip phenomenon of elastomers in oscillatory shear measurements using parallel-plate rotational rheometry: I. Detecting wall slip
In: Polymer Testing (2017)
ISSN: 0142-9418
DOI: 10.1016/j.polymertesting.2017.05.035