Martonová, Denisa, Dr.-Ing.
Dr.-Ing. Denisa Martonová
-
Geglättete finite Elemente Methoden in der Modellierung der Elektromechnik des Herzens
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. April 2022 - 31. März 2024
Mittelgeber: Deutsche Forschungsgemeinschaft (DFG) -
Etablierung eines Herzunterstützungssystems basierend auf einer dem Herzbeutel nachgebildeten kontraktilen Membran
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: 1. Mai 2016 - 15. Juli 2022
Mittelgeber: StiftungenThis project contains the establishment of a heart support system as a contractile membrane based on the pericardium to minimize the consequences of severe heart disease and to maintain proper cardiac function. The project is a research cooperation between the Chair of Applied Dynamics and the Pediatric Cardiology at the Friedrich-Alexander-Universität Erlangen-Nürnberg and is funded by the Klaus Tschira Foundation.
The project includes the study of cardiac function under pathological and normal conditions by developing computer models of the heart, which are validated with experimental data of pediatric cardiology of the University of Erlangen Nuremberg. The clinical measurements and experimental data, as well as the simulation model are based on rat hearts. Subsequently, a cardiac support system based on a membrane is to be designed to improve or at least maintain heart function under pathological conditions.
In particular at the Chair of Applied Dynamics, we are focusing on the development of the underlying computational heart model including the anatomy, morphology, electrophysiology and also the fluid-structure interaction to be able to build up the optimized heart support system but also to better understand the function of the heart and thus to predict or early detect cardiac dysfunctions and bring new treatments to the clinic.
2024
Structure preserving neural network-based methods — Euler’s elastica and cardiac model discovery
conference, NUMDIFF-17 Conference on the Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 9. September 2024 - 13. September 2024)
, , :
Computational modelling and simulation of rat heart electromechanics – from (smoothed) finite element methods towards a ligand-receptor model (Dissertation, 2024)
URL: https://www.ltd.tf.fau.de/files/2024/05/dissertation-denisa-martonova.pdf
:
Automated model discovery for human cardiac tissue
conference, Netzwerktagung der Alexander von Humboldt Stiftung (Erlangen, 21. November 2024)
, , , , , :
Automated model discovery for human cardiac tissue: Discovering the best model and parameters
In: Computer Methods in Applied Mechanics and Engineering 428 (2024), Art.Nr.: 117078
ISSN: 0045-7825
DOI: 10.1016/j.cma.2024.117078
, , , , , :
Constitutive neural networks for model discovery of myocardial tissue
conference, CMBBE 2024 SYMPOSIUM, 19th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (Vancouver, 30. Juli 2024 - 1. August 2024)
, , , , , :
2023
Transmural fibre orientations based on Laplace-Dirichlet-Rule-Based-Methods and their influence on human heart simulations
In: Journal of Biomechanics (2023), Art.Nr.: 111643
ISSN: 0021-9290
DOI: 10.1016/j.jbiomech.2023.111643
, , , , , , :
Smoothed finite element methods in modelling and simulation of active cardiac contraction
conference, 18th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (Paris, 3. Mai 2023 - 5. Mai 2023)
, , , :
Smoothed finite element methods in simulation of active contraction of myocardial tissue samples
In: Journal of Biomechanics (2023)
ISSN: 0021-9290
DOI: 10.1016/j.jbiomech.2023.111691
, , , :
Effects of PTH glandular and external dosing patterns on bone cell activity using a two-state receptor model—Implications for bone disease progression and treatment
In: PLoS ONE (2023)
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0283544
, , , , , , :
2022
The influence of the orthotropic tissue in an electromechanical heart model
conference, 27th Congress of the European Society of Biomechanics (Porto, 26. Juni 2022 - 29. Juni 2022)
, , , , , :
Support Pressure Acting on the Epicardial Surface of a Rat Left Ventricle — A Computational Study
In: Frontiers in Cardiovascular Medicine 9 (2022)
ISSN: 2297-055X
DOI: 10.3389/fcvm.2022.850274
, , , , , :
Comparison of stress and stress–strain approaches for the active contraction in a rat cardiac cycle model
In: Journal of Biomechanics 134 (2022), Art.Nr.: 110980
ISSN: 0021-9290
DOI: 10.1016/j.jbiomech.2022.110980
, , , , , :
2021
A Transmural Path Model Improves the Definition of the Orthotropic Tissue Structure in Heart Simulations
In: Journal of Biomechanical Engineering-Transactions of the Asme 144 (2021), S. 031002 (10 pages)
ISSN: 0148-0731
DOI: 10.1115/1.4052219
, , , , :
Discontinuous Galerkin-based approach to define orthotropic tissue structure in computational heart models
conference, International Conference on Computational Biomechanics (Paris, 20. September 2021 - 21. September 2021)
, , , , :
Characterisation of passive mechanical properties in healthy and infarcted rat myocardium
conference, GAMM Annual Meeting (Kassel, 15. März 2021 - 19. März 2021)
, , , , , , , :
Influence of passive mechanical properties in healthy and infarcted rat myocardium on the cardiac cycle
GAMM Annual Meeting (Kassel, 15. März 2021 - 19. März 2021)
In: Proc. Appl. Math. Mech. (PAMM) 2021
DOI: 10.1002/pamm.202100054
, , , , , , , :
Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model
In: Journal of the Mechanical Behavior of Biomedical Materials 119 (2021), Art.Nr.: 104430
ISSN: 1751-6161
DOI: 10.1016/j.jmbbm.2021.104430
, , , , , , , :
Towards the simulation of active cardiac mechanics using a smoothed finite element method
In: Journal of Biomechanics 115 (2021), S. 110153
ISSN: 0021-9290
DOI: 10.1016/j.jbiomech.2020.110153
, , , :
2019
Möglichkeiten und Perspektiven der Modellierung und Simulation
Wissenschaftliche Jahrestagung der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (Wiesbaden, 16. Februar 2019 - 19. Februar 2019)
, , , , , :